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We consider steady, two-dimensional viscous flow of two fluids near a corner. The two 
fluids meet at the wedge vertex and are locally in contact with each other along a 
straight line emanating from the corner. The double wedge, treated in polar 
coordinates, admits separable solutions with bounded velocities at the corner. We seek 
local solutions which satisfy all local boundary conditions, as well as partial local 
solutions which satisfy all but the normal-stress boundary conditions. We find that 
local solutions exist for a wide range of total wedge angles and that a class of individual 
wedge angles and stress exponents is selected. Partial local solutions exist for all 
combinations of individual wedge angles and the stress exponents are determined as 
functions of these angles and the viscosity ratio. In both cases, Moffatt vortices can be 
found. Our aim in this work is to describe local two-fluid flow by determining for which 
wedge angles solutions exist, identifying singularities in the stress at the corner, and 
identifying conditions under which Moffatt vortices can be present in the flow. 
Furthermore, for the single-wedge geometry, we identify for small capillary number 
non-uniformities present in solutions valid near the corner. 

1. Introduction 
There are many viscous flows in which the fluid must negotiate corners (e.g. flow in 

a driven cavity or flow over a rectangular cylinder) ; this is always the case in contact- 
line problems (Hasimoto & Sano 1980; Pan & Acrivos 1967). Near a contact line, there 
is a flow in a wedge, one of whose sides is a rigid boundary and the other of which is 
a free surface. If the contact line is stationary, it is a site of an integrable flow 
singularity (Davis 1983). If the contact line is moving along the solid, then it is the site 
of a non-integrable singularity unless the no-slip condition is effectively relaxed 
(Dussan V. & Davis 1974). Stationary contact lines are present in die swell and various 
meniscus problems. Moving contact lines are present in wetting and spreading flows. 
Contact-line problems are usually treated as single-fluid systems in which the second 
fluid is regarded as a passive gas. However, if the dynamics of both fluids is important, 
one should consider flow in a double-wedge region. 

The local analysis of two-dimensional viscous flow of a single fluid in corner regions 
has been studied by several authors. Dean & Montagnon (1949) considered a wedge 
bounded by two rigid planes and determined the properties of the flow as functions of 
the wedge angle. Michael (1958) considered a wedge with one solid boundary and one 
planar free surface and found that in order for the free surface to be stress-free the 
wedge angle must be n. It is the requirement of zero normal stress on the free surface 
that selects a specific wedge angle. Moffatt (1964a) considered these cases as well as 
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the case of a wedge bounded by two free surfaces and described in detail situations 
in which sequences of corner eddies, now known as Moffatt vortices, may be present 
in the flow. 

These flows are local and must be matched to some outer flow (e.g. see Moffatt 
1964b). Other studies have imbedded these local solutions in global flows. Schultz & 
Gervasio (1990) performed a numerical study of the die swell problem with special 
attention drawn to the singularity at the die exit. Their treatment of the problem is the 
first numerical study consistent with the local predictions of the separation angle made 
by Michael (1958). For zero surface tension they find that the separation angle is R. 
When they considered non-zero surface tension, they found that the separation angle 
is not 180°, but argue that this is not in violation of the local analysis since the free- 
surface curvature has the same singular form as the normal stress. Richardson (1970) 
considered the ‘ stick-slip ’ problem in a two-dimensional channel. This problem is 
similar to the die swell problem in that at a point along the channel the boundary 
condition abruptly changes from a no-slip condition to a zero-shear-stress condition. 
The solution to this problem may be viewed as the solution to the die swell problem 
in the limit of infinite surface tension. 

Richardson (1970) performed a regular perturbation expansion in the limit of large 
surface tension and suggested that the correction to the die swell exit angle violates 
Michael’s local solution since it required that a planar free surface meet a planar rigid 
boundary at an angle other than R. We perform a regular perturbation expansion 
similar to that of Richardson. However, in our local expansion we impose no far-field 
boundary conditions and hence the position of the free surface remains undetermined. 
In this way we are able to identify non-uniformities present in the expansion for exit 
angles near R as the corner is approached. This analysis confirms the suggestion by 
Richardson that singular methods must be used in order to obtain a uniformly valid 
solution. We demonstrate that the expansion by Richardson breaks down as the corner 
is approached. Therefore, it is not a local solution and the result of Michael should not 
apply. In support of the results of Schultz & Gervasio (1990), we show that the actual 
local solution valid for r -+ 0 has infinite curvature which balances the normal force 
along the free surface. In the die swell problem, then, we can imagine that this local 
solution can be matched with the result given by Richardson for some larger value 
of r.  

Proudman & Asadullah (1988) have treated the case of two fluids meeting along a 
horizontal rigid plane. They discovered that the inclusion of the second fluid in the 
limit of vanishing viscosity ratio between the two fluids introduces a new mode of flow 
not present in the single-fluid model. Michael & O’Neill (1977) considered a double- 
wedge geometry with variable total angle but with the same fluid in each wedge. This 
is the situation of single-fluid flow in a wedge with a separating streamline emanating 
from the wedge vertex. The object of the present work is to extend these analyses to 
include all double-wedge configurations for all viscosity ratios. Such situations are 
present in various processing systems, for example, Czochralski and other meniscus- 
defined crystal growth configurations. 

In the present work we shall seek both local solutions, those that satisfy all local 
boundary conditions, and partial local solutions, those that, when free surfaces are 
present, satisfy all local boundary conditions with the exception of the normal-stress 
boundary condition. Partial local solutions are important in the description of the local 
flow valid for infinite surface tension (or zero capillary number). When perturbation 
methods for small capillary number are used, conditions on the flow imposed by the 
normal-stress boundary condition do not appear in the leading-order problem and 
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therefore partial local solutions can be viewed as leading-order solutions for these 
cases. Partial local solutions also describe cases in which there exists an appropriate 
spatially varying pressure distribution outside the free surface such that the normal- 
stress boundary condition is satisfied without further restriction on the flow (Moffatt 
1964~) .  Under such an assumption, the restriction of small capillary number is not 
necessary. When such provisions are made for the pressure, these solutions satisfy all 
local boundary conditions and can be thought of as specialized local solutions. 
Trogdon & Joseph (1981) study the singularity at the exit in the die swell problem for 
values of surface tension not necessarily large. They examined the singularity through 
a local analysis similar to that of Moffatt (1964u), and determined the stress exponent 
as a function of surface tension by solving the local problem without the kinematic 
boundary condition, the condition in their analysis that determines the position of the 
free surface. This is a different type of partial local solution but the spirit of the analysis 
is the same as those motivated by large surface tension. 

The present work seeks to extend the single-fluid cases, the double-wedge system 
studied by Michael & O'Neill (1977), and the two-fluid system for a horizontal plate 
studied by Proudman & Asadullah (1988) to the case of general viscosity ratios and 
general angles for two-fluid systems. In $2 we shall analyse the non-uniformities 
present in the small capillary number expansion for a single wedge and review the 
single-fluid results. We then extend these ideas in 0 3 to the two-fluid problem. We shall 
consider the class of solutions that have bounded velocities at the wedge vertex. 

2. Single-fluid flow 
Consider steady-two-dimensional flow in a wedge. The flow of an incompressible 

Newtonian fluid is governed by the Navier-Stokes equations. Such a flow can be 
characterized by the Reynolds number R = pUr/p ,  where U is a velocity scale, r is a 
lengthscale, and p and ,u are the density and viscosity of the fluid, respectively. The 
analysis of the local flow near a corner region can be simplified by defining a Reynolds 
number based on the distance, r ,  to the corner which can be taken arbitrarily small. 
Thus, we consider Stokes flow. This approximation is therefore valid for 

r 4 ,u/pU. 

v * u  = 0, 
The local flow is governed by 

vet3 = 0, (2.3) 
where u is the velocity vector, G = -p /+p[Vu  + (Vu)'] is the stress tensor, and p is the 
pressure. A stream function, $, defined in plane polar coordinates, where 

satisfies the biharmonic equation 
V4k = 0. 

In polar coordinates the biharmonic equation has separable solutions of the form 
l/r = f+l{A,cos (g + 1) 8+ B, sin (CT+ 1) B+ C,cos (a- 1) 8+ D ,  sin (a- 1) 8) 
+ r2(Al cos 2O+B, sin 2O+ C, O+ 0,) + r(A, cos 8+  B, sin 8+ C, Ocos O+ 0, 8 sin O), 

(2.6) 
where A$, B,, C,, L), for i = 0, 1 ,  CT (a .t. 0,l)  are unknown constants to be determined by 
the boundary conditions. In general, one or more of these coefficients will be left 
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8 = 0  8 = a  

rr rigid rigid 
rf rigid free 
ff free free 

TABLE 1. Summary of wedge cases considered 

undetermined by the local analysis; these are in principle determined by matching to 
an outer flow. The exponent B, which arises as a separation constant, may be complex 
and is taken to have positive real part. Values of (r with Re ( B )  < 0 are not considered 
since they lead to unbounded velocities at the wedge vertex, r = 0. For similar reasons, 
solutions of the biharmonic equation such as In r ,  r2  In r ,  8ln r ,  and Br2 In r have also 
been excluded here. 

Boundary conditions along the two wedge boundaries determine the constants in 
(2.6) and also may impose certain restrictions on the values of and wedge angle a. 
Along a rigid surface, both velocity components must vanish. Along a planar free 
surface, the normal velocity and the shear and normal stresses must vanish. The 
azimuthal component of the velocity must vanish. on the free surface. Also, the shear 
stress vanishes, 

where n and t are the unit normal vector (directed outward from the wedge) and unit 
tangent vector to the surface, respectively. If we examine the normal-stress boundary 
condition, we have, in dimensionless form, 

( ts .n)*i  = 0, (2.7) 

1 
C 

(ts-n)-n = --(V-n), 

where C = Up/y is the capillary number relating viscous forces on the interface to the 
constant value of the surface tension coefficient, y. The free surface is taken to have 
zero curvature. Hence, for non-zero C the normal stress must vanish on the free 
surface. We shall refer to the solutions satisfying all of the boundary conditions on the 
free surface as local solutions. However, it is often the case in contact-line problems that 
C is a small number (Davis 1983). In the limit C+O one can seek solutions as 
perturbation expansions in small capillary number (e.g. see Richardson 1970). In this 
limit the normal-stress boundary conditions places no restrictions on the flow field to 
leading order. That is, the leading-order normal stress boundary condition states only 
that the free surface must have zero curvature. For these cases the stream function is 
given by $ = $+ O(C) where the zero-normal-stress requirement is not placed on $. 
We refer to such solutions, 6, as partial local solutions. Moffatt (1964~) arrives at the 
same type of solution but through the assumption that there exists an appropriate 
spatially varying pressure field outside the free surface such that the normal-stress 
boundary condition is satisfied. Under such an assumption, the restriction of small 
capillary number is not necessary. 

The wedge geometry has the azimuthal angle, 8, ranging from 0 to a and the radial 
distance, r ,  measured from the corner. The cases considered are summarized in table 
1. The boundary conditions applied on a rigid plane are 

$=--0. a* - 
ae (2.9) 
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These correspond to vanishing normal and tangential velocities on the rigid plane. The 
boundary conditions applied on a planar free surface are 

II/ = 0, (2.10a) 

(2.10 b) 

(2.104 

When the stream function is given by (2.6), the pressure takes the form 

2 
/" r 

= 4arg-1 {D,  cos (a- 1) 6 - C, sin (a - 1 )  8) +-(c, cos + D, sin 01 + 4 ~ ,  In r. 

(2.1 1) 

The boundary conditions (2.10) correspond to zero normal velocity, zero shear stress 
and zero normal stress on the free surface, respectively. The shear and normal stresses, 
corresponding to the stream function given by (2.6) are 

p-l(n-n) - t = - 2arU-l {(a + 1) (A,cos (a + 1) 8 +B,  sin (a+ 1) 6)  
+ (a- 1) (C,cos (a- 1) 8+D,sin (CT- 1) 8)) 

- 4{A, cos 26 + B, sin 26) +-{Do cos 6- C, sin 8}, 2 
r (2.12a) 

and 

p-'(a.n).n = 2a(a+ 1)r'-1{A,sin(a+1)8-B,cos(a+1)6 
+ C, sin (r - 1 )  6 -Ducos (r - 1) O} - 4C, In r 

--{ C, cos 8 +Do sin 8} - 2 { C, - 2 4  sin 28 + 2B, cos 28). (2.12b) 2 
r 

The terms of most interest in these expressions are those corresponding to the strongest 
contribution near r = 0. These correspond to r-l ,  lnr, or ru-l depending on whether 
or not the coefficient multiplying each of these terms vanishes. When the stress has the 
form rU-' we are most interested in the smallest value of Re (r). These expressions show 
which terms in the stream function lead to the most singular behaviour in the stress at 
the wedge vertex. 

We shall first discuss the small-capillary-number expansion for a rigid-free wedge 
and then discuss the cases shown in table 1. 

2.1. Non-uniformities for small capillary number 
The following analysis identifies the type of non-uniformity in the expansions for the 
stream function and free-surface position for small capillary number, C = Up/y (or 
large surface tension, y), for a single wedge with fluid of viscosity, p, bounded by a rigid 
plane, 6 = 0, and a free surface, 0 = a(r). The free-surface position is not assumed 
planar here. This analysis offers a resolution to the seemingly contradictory results 
found by Richardson (1970), in his expansion for large surface tension, and Michael 
(1958). We perform a regular perturbation expansion for C < 1 local to the corner. 
This analysis is similar to that given by Richardson but in the present case we make 
no assumptions about the far-field conditions and therefore the free-surface position 
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is left undetermined by this local analysis. As a result, it is possible to identify non- 
uniformities which are present as the angle n is approached. We expand as follows: 

$ - $ + C $ , + C 2 ~ , +  ..., (2.13 a) 
a-ao+Ca,+C2a2+ .... (2.13b) 

The governing equations are the biharmonic equation for $ with boundary conditions 
requiring that both velocity components vanish on 19 = 0, and that the normal 
component of the velocity vanish, the shear stress vanish, and the normal stress 
balances surface tension times curvature on the free surface 0 = a(r). Note that, since 
the free surface is not assumed to be planar, the boundary conditions on 0 = a(r) are 
more complicated than those given by (2.10). 

is given 
by (2.28)-(2.30), (2.32) or (2.22) depending on the value of ao. 

At leading order we find that a, is constant and as a result the solution for 

If we include higher orders, we find that 

where 

(2.14) 

(2.15 a) 

- 64u2(2a + 1) D: 
{a2(cr2 - 1) sin4 a, 

(a + 1)2 sin2 ua0(2v sin 201, - sin 4ua,) Ua,) = 

+(sin 2ua0 - 1) (v2 sin2 a, - sin2 ua,)]. (2.15 b) 

and u satisfies 0-sin2a,-sin2aa0 = 0. The correction to the stream function has 
N r2O+l . The expression (2.14) is valid near but not at a, = x. 

When a, = x, 
(2.16) 

where u = 2,3,4, . . . and a, and a, are undetermined constants. The expansion found 
by Richardson (1970) corresponds to the leading-order and first-correction terms 
shown here where a, is determined by the far field. Since u = 2,3,4, ..., this 
expansion corresponds to a planar interface at an angle a - n + Ca, + C2a2 + . . . at 
r = 0. Such an expansion, as noted by Richardson, would violate the local results of 
Michael (1958) since it requires that a planar rigid surface and a planar free surface 
meet at an angle other than x. Further, for a. = n, & - r: and - r2 .  Note that a, and 
a2 do not appear for general values of a. owing to solvability conditions in the higher- 
order problems. 

To understand how the expansion obtained by Richardson breaks down we expand 
the solution for a given by (2.14) for a, near n. This gives 

+ . . .} + . . . . (2.17) 

From this equation we can identify non-uniformities for small C as r and a,-x 
approach zero; depending on how this limit is taken, different results are obtained. 

Consider the case where we first let r + 0 (before a, + n). Here we find 

} +  ... 32 (2.18) 
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In this limit we find that the free surface has infinite curvature at the corner. This is a 
valid local solution which does not violate the results presented by Michael (1958). It 
requires for asymptocity that (a, - n) % Ca ra so cc, = n only if C = 0 or r = 0. 

If we now reverse the order in which we take the limits by first letting a, + R and then 
letting r + 0, we find 

1 1  

a N +...}+ ... . (2.19) 

Here we observe that the expansion is valid when C2r/(a, - n) < Cr2, or r 9 C/(a, - n). 
Therefore, as indicated by this inequality, r + O  is not allowed unless C = 0. 
Consequently, in this limit the expansion shown cannot be considered local. 

This shows that while the interface calculated by Richardson does approach the 
corner as a plane at an angle other than n it is not a valid local (or inner) solution as 
r --f 0 but rather should be viewed as an intermediate expansion valid between an outer 
solution and an inner solution. 

The above analysis shows that singular methods with the appropriate matching 
conditions must be used in order to obtain a uniformly valid expansion in these 
regimes. It also demonstrates the importance of partial local solutions in such cases. 

2.2. Rigidlrigid wedge 
Local solutions were obtained by Dean & Montagnon (1949) who sought a stream 
function of the form given in (2.6) but did not include the special terms @ N r, r2. The 
boundary conditions on the rigid surface, 8 = 0, a, are given in (2.9). They found that 
non-trivial solutions exist only when 

crsina+sinaa = 0. (2.20) 

The two roots correspond to symmetric (-) and antisymmetric (+) modes (Moffatt 
1964~). We note that terms in the stream function proportional to r2 are permitted for 
specific wedge angles, a*, where 

sin a* (sin a* -a* cos a*) = 0. (2.21) 

This expression can be obtained from (2.20) asymptotically for cr+ 1. There are 
three solutions to (2.21) on the interval (0,2n] given by a* = n, a* E 1.43x, and 
a* = 2n. 

For a =k a* the stream function is given by 

20, ruf' 
a, 4, 

@ =  ( r+ l )s inaas ina  

g(8, a, r) = sin (a- 8) . sin cr(a - 8) where - sin cr8 - v sin 8 

and cr is given by (2.20). 

sin cra sin a sin a sin aa 

For a = n, 2n 

(2.22) 

(2.23) 

2 
a+ 1 

@ = ruf' { 2C, sin cr8 sin 8 +- D,(sin a8cos 8- vcos cr6 sin 0) 

where cr = 1,2,3,4, ..., for a = n: and a = t ,  1, :, 2, ..., for a = 2n. Note here that the 
case a = 1 gives the correct r2 term in the stream function so we have combined the 
cases for simplicity. 
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FIGURE 1. The real part, Re(a- l), of the most dominant stress exponent, for three different types 
of hydrodynamic boundary conditions: rigid/rigid wedge (rr) for local solutions (LS) (Dean & 
Montagnon 1949), and rigid/free wedge (rf) and free/free wedge (rr) for partial local solutions (PLS) 
(Moffatt 1964~). The stress field is singular when this exponent is negative. There are logarithmic 
singularities present when a x 1.4371 in the rigid/rigid case and when 01 x 0.715~, 1 .23~,  and 1 . 7 4 ~  
in the rigid/free case. No logarithmic singularities are present in the free/free case. The dashed 
portions of the curves indicate that the root has a non-zero imaginary part; the root is complex for 
a c 0.813~ in the rigid/rigid case and for a < 0 .441~  in the rigid/free case. The free/free wedge root, 
including all higher modes, is always real. 

For a = a* M 1.437~ 

20,  rafl *g(8,a*,~~)+B,r~(a*-28-a*cos28+sin28), (2.25) ' = (cr + 1) sin va* sin a 

where c is given by (2.20). 
Figure 1 shows a plot of the smallest positive value of Re (a - 1) as a function of a 

(Dean & Montagnon 1949). For general a the stress field has radial dependence given 
by P"-' so that the corner is the location of a singular stress field for wedge angles 
exceeding x. However, the stress field is integrable for all wedge angles. For a M 1.437~ 
there is a logarithmic singularity in the stress, though this is not the dominant 
singularity. The exponent CT becomes complex for a < 0.8137~ giving rise to corner 
eddies in the flow as described by Moffatt (1964~). 

2.3. Rigidlfree wedge 
Here the rigid boundary is at 8 = 0 and the free surface is at 8 = a. Michael (1958) 
solved the biharmonic equation using the same separable form for the stream function 
as used by Dean & Montagnon (1949) and imposed the boundary conditions given by 
(2.9) on 8 = 0 and (2.10) on B = a. Notice that there are now five boundary conditions 
rather than four. Since the interface is taken to be planar, the 'extra' boundary 
condition, the normal-stress boundary condition, determines a, the position of the free 
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surface. Michael (1958) has shown that in order for a non-trivial solution to exist, the 
wedge angle must be n. The local solutions are then given by 

(2.26) 
Here the stress field has a square-root singularity at the contact line r = 0. The more 
general form of the stream function, given by (2.6) does not lead to additional terms 
in the solution. 

For partial local solutions, the leading-order stream function, 4, is found by 
imposing all of the above boundary conditions except for the normal-stress boundary 
condition. The result is that non-trivial solutions for 4 can be found for all wedge 
angles with the value of a determined by 

a sin 201 -sin 2aa = 0. (2.27) 

As noted by Moffatt (1964a), this result can be obtained by using the symmetric mode 
of (2.20) in a wedge of angle 2a. This result (e.g. Moffatt 1964a; Brown 1991) provides 
a means of determining u and hence the singular nature of the flow as a function of 
the wedge angle. The leading-order stream function is given as follows: 

?,h = -2AUru+lsina8sin8, a = 1 3  2, 2, 5 2, -.. * 

for a = $n 

D",(sinaecos8-acosaesin8), a = 3 ,5 ,7 ,  ... 
(2.28) 

- 2A", sin sin 8, a = 2 , 4 , 6  ,..., 
for a = n 

for a = gn 

The case a = n coincides with the 'stick-slip' analysis of Richardson (1970). 
Additional terms in the stream function proportional to r2 are allowed for wedge 

angles, ac, satisfying 
sin 2mc - 201, cos 2a, = 0. (2.31) 

This equation can be obtained from (2.27) asymptotically for a+ 1.  There are three 
solutions to (2.31) on the interval (0,2x) which are given approximately by 0.715n, 
1.23n, and 1.74~. Here the stream function is given by 

- 2Bu ru+1 ' = (a+ l)sinaacsinac g(8, a,, a) + jl r2(2a, - 28 - 2a, cos 28 + sin 269, (2.32) 

where a satisfies (2.27). 
For a + in, n, in, a, the stream function is given by (2.22) with values of u satisfying 

(2.27). 
The local behaviour of the flow is dominated by the term corresponding to the 

smallest value of Re (a). For a = :n the flow is regular, for a = n there is a square-root 
singularity in the stress, and for a = in the stress is singular ( N r-g). For general a 
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figure 1 shows a plot of Re (a- 1) us. a where a is the root of (2.27) with the smallest 
real part. We see that the stress is singular for a > 0.7157~ but is always integrable. 
When a = a, a logarithmic stress singularity is present (see (2.12b)). However, this is 
the dominant singularity only when a, = 0.7157~, the point where a passes through 
unity. Notice that a becomes complex for values of a < 0.4417~ indicating the presence 
of Moffatt vortices (Moffatt 1964a). These vortices, however, are only present in the 
partial local solutions; they are not present for local solutions. 

2.4. Freelfree wedge 
Local solutions, satisfying boundary conditions (2.10) on 8 = 0, a, can only be found 
for the specific wedge angle a = 7 ~ .  Here we find that 

9 = 2B,r'+1cosa8sin8+B,rsin8, CT = 2,3,4, ... . (2.33) 

Notice that the 'wedge' is just a flat surface when a = A. Not surprisingly the flow is 
regular. 

Next we consider partial local solutions. Moffatt (1964~) showed the results for 
antisymmetric flows. For completeness we present all of the possibilities here. 

The existence of partial local solutions requires that 

s in(a+l)asin(a- l )a  = 0. 
For a 8 +p, a, :a we have 

(2.34) 

where m is any non-zero integer (positive or negative) such that a > 0 and a $: 1. As 
noted by Moffatt 1964a), the exponent is always real and hence no eddies are present 
for wedges defined by two free surfaces. The smallest exponent, a- 1 ,  corresponding 
to the locally dominant stress field, is plotted as a function of a in figure 1. Note that 
the smallest value of a- 1 corresponds to three separate branches of (2.34). The stress 
field is singular for a > $ 7 ~  but is always integrable. 

For a = ;A, 

6 = r"+l(Eusin(a+ l)B+D",sin(a-1)8}+~~rr2sin28, a = 3,5,7, ... . (2.36) 

For a = a, 

6 = ru+1{~~sin(a+1)~+D",s in(a-1)8}+B,rasin28+~~rsin8,  a = 2,3,4, ... . 

For a = ;a, 
(2.37) 

$= ~ + ~ ~ B , s i n ( ~ + 1 ) ~ + ~ , s i n ( a - 1 ) ~ ~ + ~ ~ r ~ s i n 2 ~ ,  a=& 3,393, 5 1 3  , -.. . (2.38) 

For a = $a and 7~ the flow is regular. When a = : 7 ~  the stress is singular (- r-g). 
In figure 1 a comparison between the exponents for the local solutions in the 

rigid/rigid case, and the partial local solutions in the rigid/free and free/free cases can 
be made. First, we see that the rigid/rigid wedge is the least singular case while the 
free/free case is the most singular. Second, for all three cases, larger wedges tend to 
have stronger singularities, however, in the freelfree case a increases on the interval 
(A, gn). Finally, we note that in all three cases Re (c) --f 00 as a + 0 indicating that the 
flow near the corner becomes weaker as the angle becomes smaller. Moffatt vortices 
may be present whenever a rigid surface is present. However, when local solutions are 
sought in the rigid/free case no Moffatt vortices are found. 
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3. Two-fluid flow 
We now consider the two-fluid system with the geometry as shown in figure 2. Here 

the outer boundaries are rigid planes and are given by 19 = -a1 and 6' = a2, and 
the interface separating the two fluids is given by 8 = 0; the total wedge angle is 
a = a, + up. The fluids in regions 1 and 2 are characterized by viscosities p, and p,, 
respectively, with ,u = ,u,/pl. We solve the biharmonic equation in each phase with 
boundary conditions 

k 1 = - - 0  Wl- 
ae on e = -a,, 

$ =--0, a l l . 2  - o n 8 = a 2 ,  
ae 

(3.1 a) 

(3.lb) 

$l = k2 = 0 on 0 = 0, (3.1 c) 

(3.1 d )  

(3.1 e )  

These state that the normal and tangential velocities vanish on 8 = -al, a,, the normal 
velocities vanish on 8 = 0, and that the jump in the tangential velocities, shear stresses, 
and normal stresses vanish across the free surface at 8 = 0. We assume solutions of the 
form 

$i = r"+l {Az'cos (a+ 1) 8-t B!) sin(a+ 1) 8 + C!) cos (a - 1) 8+@ sin (a- 1) 8) 

+ r2 {A?) cos 28+ Bf) sin 28+ Cy) 8+ Dy)} (3.2) 

for i = 1,2 where we have excluded terms corresponding to unbounded velocities at the 
origin. We find that there is no contribution from terms like 7,h - r.  

Proudman & Asadullah (1988) considered two fluids of different viscosities for the 
case with total wedge angle n: and described partial local solutions. The following 
extends their results to treat partial local solutions for total wedge angles other than 
IT, and local solutions for all total wedge angles. 

There exist partial local solutions for all wedge angles. Using the notation of 
Proudman & Asadullah (1988), we find that this requires 

(3.3) 
for the coefficients of r"+l, and 

a {F(2a1) -cos 2a,) (F2(a2) - F(aJ cos a,} + ,u -L {F(2a2) 
aa 

- cos 2a,} {F2(a,) -F(a,) cos a,} = 0 (3.4) 
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8 = 0  

8 =  "2 

FIGURE 2. The two-fluid wedge geometry. The boundaries at 6 = -a1 and 6 = a2 are rigid while 
0 = 0 is a planar free surface. Fluid 1 is characterized by a viscosity pl and fluid 2 by a viscosity p2. 

for the coefficients of r2 where 
sin z F(z) = -* 

Z 
(3.5) 

Compare (3 .3)  with (1.6) in Proudman & Asadullah (1988) (take cr.-fh, a l - f a ,  and 
a,+n-a to obtain their result). Notice that (3.4) can be obtained from (3 .3)  
asymptotically for cr + 1.  The relation between these two equations is analogous to that 
in the single-fluid cases (see (2.20) and (2.21), and (2.27) and (2.31)). 

When (3.3) is satisfied, the stream functions are given by (3.2) with coefficients 
A, (1) - - - P C(2) U )  ( 3 . 6 ~ )  

(3.6b) 

DL2', (3.6d) 0:) = -p(a sin2 a1 + sin2 aa,) (a sin 2a2 - sin 2c7a2) 
(a sin2 a2 + sin2 cra,) (a sin 2a, - sin 2aa1)  

CT sin2 aa - sin2 ga, 
a sin2 a2 + sin2 aaz 

B f )  = Dk?, 

- (a sin 2a, - sin 2aaJ 
(2) - OF', 

cc - 2 ( a  sin2 a2 + sin2 maz) 

where 0:) remains arbitrary. These expressions were obtained under the assumptions 
that a sin 201, - sin 2aa2 =k 0, a sin 2a, - sin 2aal =l= 0, and a sin2 a2 + sin2 aa2 8 0. How- 
ever, with the exception of the case where a1 = a2 = 7[: and cr = 2 , 3 , 4 ,  , , . the expressions 
for the coefficients can be obtained from (3.6) in the limits as these values are 
approached. 
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When al = a2 = n and a = 1,2,3,4, . . . , the stream functions are given by 

20;’ 
a+ 1 

q1 = rr+l{ 2 p c ~ )  sin r e  sin 8 + - (sin ae cos e - a cos ae sin e) 

I q2 = rff+1{2C~~sina/3sin8+-(sina~cosO-acosa/3sin/3) 2Dp) . (3.7b) 
cr+ 1 

Note that the case a = 1 gives the correct r2 term so this term is not written separately. 

tJ1 = rg+l{Ab].) cos (c+ 1) e+ B:) sin (a+ 1) e+ c:) cos (a- 1) e+@? sin (a- 1) e} 
For parameter values that also satisfy (3.4) the stream functions are given by 

sin28}, (3 .8~)  2( 1 - cos 2a1) 1 - cos 2a1 - 201, sin 2a1 
+przA~){cos2e- 1 -  sin 2a1 - 2a1 cos 2a1 e- sin 2a1 - 2a1 cos 2a1 

sin 2 3 ,  (3.8 b) 
2( 1 - cos 2 4  

sin 201, - 2a, cos 2a2 
1 - cos 2a, - 2a2 sin 2a, 

sin 2a, - 2a, cos 2a2 ’ + 

where the coefficients for the terms proportional to rU+l are given by (3.6). Although 
these expressions are not strictly valid when sin 201, - 2a1 cos 201, = 0 or sin 2a2 - 2a2 
cos2a, = 0, the result in these cases can be recovered from these expressions in the 
limits as those values are approached; hence we present only the most general case. 

Equations (3.3) determines the allowable values of (T for given values of al, a2, and 
p. This condition is analogous to conditions (2.20) and (2.27) and in fact contains as 
factors the single-fluid relations. Note that without loss of generality we can take 
p < 1. Also note that when al = a2 = +a the value of a is independent of p and this 
condition may be satisfied by a symmetric mode in a wedge of angle a or by either a 
symmetric mode or an antisymmetric mode in each wedge of angle +a. We have 
analysed (3.3) numerically and asymptotically to find the roots, a. Figures 3-7 show 
the real parts of the numerically computed roots for different values of p and a. Again 
we are most interested in the root with the smallest real part. 

Proudman & Asadullah (1988) found that the inclusion of the second fluid for 
,u + 1 leads to two modes of flow, the ‘velocity’ mode, and the ‘stress’ mode. They 
noted that the limit p --z 0 must be interpreted as p l  + 00 rather than p, + 0 since only 
Stokes flows are being examined. We find that these two modes of flow are present for 
all angles a. 

Figure 3 shows the real part of the roots, a, for a = 27t. The dashed curves represent 
the solution for p = 0. From (3.3) we see that solutions for p+O satisfy 

(a sin 2a1 -sin 2aa1) (a2 a2 - sin2 aa,) = 0. 

Physically, p = 0 represents flow in a single wedge bounded by a rigid plane at 8 = - a1 
and a planar free surface at @ =  0. Hence we expect that the roots, a, satisfy 
asin2al-sin2aal = 0 as in the single-fluid problem. This is the ‘velocity’ mode. 
However, the two-fluid problem has additional roots from fluid 2 satisfying 
a, sin2 a2 - sin2 aa, = 0. This is the ‘stress’ mode. The dashed curves shown for p = 0 
represent the smallest value of Re(@- 1) satisfying either of these two equations. 
Therefore, the smallest value of Re(a-1) for p+O is a combination of the two 
separate branches whose real parts intersect. 
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FIGURE 3. Partial local solutions: the nonlinear interaction of two solution branches for small but 
non-zero ,u and for a = a1 + az = 27c. The dashed curves represent segments of the solution branches 
for ,u = 0. These roots are real valued and hence the intersection shown is a true double root when 
,u = 0. The solid curves, corresponding to ,u = 0.01, show the boundary-layer behaviour near the 
intersection. There is also boundary-layer behaviour near az = 0 in the lower roots indicating that a 
non-uniformity is present as both a4 and p approach zero. The insets show the flow field for the points 
indicated by arrows. The inset on the left corresponds to the velocity mode and the inset on the right 
corresponds to the stress mode (Proudman & Asadullah 1988). 

The insets in figure 3 show sketches of the flow corresponding to the ‘velocity’ mode 
and the ‘stress’ mode. The left inset corresponds to the velocity mode and has non-zero 
velocity on the streamline separating the two fluids. The right inset corresponds to the 
stress mode in which the flow in wedge two is approximately flow bounded by two rigid 
planes. Fluid 1 is driven by stresses along the interface and is nearly static. 

The intersection of the branches for ,u = 0 implies the existence of double roots, 
which is important for understanding the behaviour of the roots when ,u =k 0. When ,u 
is perturbed from zero, there is root splitting that occurs at the points of intersection; 
the roots split and form two separate branches, an upper and a lower. There are many 
such intersections in the solution space at which such bifurcation occurs and, in fact, 
the upper root in figure 3 has bifurcated in three locations. The range of values of a 
for which the lowest modes intersect is given approximately by 1 . 3 5 ~  < a < 2 ~ .  
Outside of this range, these roots do not intersect in the complex plane. The lower root 
is also non-uniform as both a, and y approach zero. Owing to the nature of this 
splitting, we see that the dominant mode now corresponds to a single branch over the 
entire range of a,. The Appendix contains a perturbation analysis that captures this 
root splitting and gives a uniformly valid representation of the lower root for y Q 1. 
The asymptotic results agree well with the numerically computed roots in this range. 

Figure 4 shows the behaviour of the lowest branch for a wider range of ,us As ,u 
increases from zero to one, the value of Re (g- 1) approaches -& Note that the value 
of CT is independent of ,u when al = a2 = :a. The stress is singular for all values of ,u and 
a2, and all branches shown are real-valued. Figure 5 shows similar results for a = 2.. 
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FIGURE 4. Partial local solutions: the two-fluid stress exponents of the lower branch in figure 3 for 
a = 2x and various viscosity ratios, ,a. Note that Re (u- 1) is always negative and hence the stress is 
always singular. Also, the value of u at a2 = + = x is independent of the value of p. The roots shown 
here have zero imaginary parts. 

0.50 

0.25 

0 
n 

I 
d 

9 -0.25 

2 
-0.50 

-0.75 

-1 .oo 
0 0.5 1 .o 1.5 

a,ln 

FIGURE 5. Partial local solutions; The two-fluid stress exponents for CL = $x and various viscosity 
ratios, y.  There is a range of values with az slightly larger than &z and y small for which the stress 
is non-singular. All of the roots shown have zero imaginary parts. 
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FIGURE 6. Partial local solutions: the two-fluid stress exponents for a = A and various viscosity ratios, 
p. Proudman & Asadullah (1988) treated this case. Here the stress is non-singular except for small 
values of uz and p. There is range of values of a2 slightly greater than (i.e. the region between the 
points of discontinuous slope) for which Im (v) is non-zero. The range of a2 for which u is complex 
decreases as p approaches unity, where u is real-valued everywhere. The root for p = 0 is shown by 
the dashed curve (this curve is covered on the right portion of the plot by the outermost solid curve). 
We again note that this branch is made up of two separate branches. However, in this case these roots 
do not intersect in the complex plane, and hence for small but non-zero values of p these roots remain 
as two distinct roots. They later merge for larger values of p. 

Figure 6 shows the numerically computed roots for a = n as treated by Proudman 
& Asadullah (1988). The dashed curves (the one on the right portion of the graph is 
covered by the outermost solid curve) represent the solution for p = 0; the same as 
shown in figure 5 in Proudman & Asadullah (1988). Here we also show the roots for 
other values of p. The stress in non-singular everywhere except for small values of ,u 
and small values of a2. 

Figure 7 shows similar results for a = in. The insets show sketches of the flow for 
four different points on the solution curves for (r, and demonstrates the existence of the 
velocity and stress modes when Moffatt vortices are present. The upper-left inset 
corresponds to p = 0.001 and shows the velocity mode. Here the strength of the flow 
is comparable in each wedge. The upper-right inset corresponds to p = 0.001 and 
shows the stress mode. Here fluid 1 has a flow much weaker than that in fluid 2. The 
lower insets correspond to ,u = 0.3. There are still remnants of the two different modes 
in this case; however the lower-right inset now shows that the speeds in the two fluids 
are much less disparate than in the case where ,u = 0.001. 

We can quantify the description of the singularities as follows. When a < a,, 
where a, z 0 . 7 1 5 ~  (sin2a,-2a,cos2aC = 0), the stress is never singular. When 
a, < a < a,+n the stress may or may not be singular depending on the individual 
wedge angles and the viscosity ratio. When a > a, + 7c the stress is always singular. The 
transition from the never singular case to the always singular case is shown in figure 
8. Sketch (b) of this figure is a simplified version of figures 2 4  in Proudman & 
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FIGURE 7. Partial local solutions: the two-fluid stress exponents for a = in and various viscosity 
ratios, p. The stress is never singular. The roots are complex everywhere except for small values of 
a2 and small values of p where the roots shown for ,u = 0 and p = 0.001 dip down. The roots shown 
for ,u = 0.3 and p = 1 are complex everywhere. The root shown for p = 0 is made up of two separate 
branches which do not intersect in the complex plane. Note the presence of the fixed point at 
a1 = a$ = ;a. The four insets correspond to points along the curves as indicated by the arrows. Here 
we see that the velocity and stress modes are present when Moffatt vortices occur. The stress mode for 
,u = 0.001, sketched in the upper right inset, has a nearly static flow in fluid 1. However, the lower 
right inset, with p = 0.3, shows that for larger viscosity ratios the flow in fluid 1 strengthens. 

Asadullah (1988) showing just the contour CT = 1. The shaded regions correspond to 
regions in parameter space where the stress is singular (i.e. Re (a- 1) < 0)  while the 
unshaded regions correspond to non-singular stresses (i.e. Re (CT - 1) > 0). The 
boundary between the two regions corresponds to Re (u - 1) = 0 can be represented by 

(3.9) 
(sin 2a, - 2a, cos 2a,) (sin2 a2 - a2 sin a2 cos a2) 

r” = - (sin 201, - 201, cos 201,) (sin2 a, - a1 sin a, cos a,) * 

This is exactly the value of ,u obtained if one solves (3.4) for p. Therefore these 
boundaries also mark the location where stream functions with @ - r2 exist. Note that 
as this boundary is crossed there is in general a logarithmic singularity present in the 
stress which is due to the presence of the term Or2 in the stream function. The same type 
of logarithmic singularity is found in the rigid/free single-fluid problem when Q crosses 
unity. 

From these sketches we observe that for a2 < a1 (i.e. a2 < fa) as ,u increases u 
increases and for a, > a, the reverse is true. This says that when the smaller of the two 
wedges corresponds to the less viscous fluid, the singularity is stronger than if the 
smaller wedge corresponds to the more viscous fluid. 

We can similarly described the regions in parameter space where complex roots exist. 
We find that for a < 0.4415~ (this value corresponds to the value of a for which all of 
the roots of v sin 201 -sin 2ua = 0 are complex) the dominant root is always complex 
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FIGURE 8. Partial local solutions: ,u us. a2. The shaded regions correspond singular stresses 
(Re(@- 1) < 0) and the unshaded regions correspond to non-singular stresses (Re(@- 1) > 0). 
The five figures correspond to (a) a, c a < n, (b) ct = x ,  see Proudman & Asadullah (1988), (c) 
K < a < 2ac, (d) a = 2ac, and (e) 2ae < a < a,+n, where ac is the smallest positive solution of 
tan2a, = 2a,, given approximately by 0.715~. Intercepts at ,u = 0 are marked at the bottom of each 
figure while asymptotes for p-e 00 are indicated along the top of each figure. For values of a < a, the 
stress is never singular and for values of a > a, + n the stress is always singular. Along the boundary 
separating the two regions there is in general a logarithmic singularity due to the presence of the term 
Br2 in the stream function. 

and for a > 1.3571 the dominant root is always real. Figure 9 shows the transition from 
always complex to never complex. The shaded regions correspond to Im (c) + 0 while 
the unshaded regions correspond to Im(c) = 0 (for the dominant mode). 

As in the single-fluid results, cr tends to decrease (leading to more singular stresses) 
as the total wedge angle gets larger. As noted by Proudman & Asadullah (1988), as 
either a1 or a2 approaches zero, the dominant mode has finite v (e.g. compare figure 
1 with figure 4). 

We now consider local solutions. Michael & O’Neill (1 977) have considered local 
solutions for the case ,u = 1, which corresponds to single-fluid flow in a rigid/rigid 
wedge with the additional requirement that a separating streamline emanates from the 
corner. They found when the total wedge angle is 71: or 271 that the separating streamline 
can occur at any angle. For other wedges the streamline occurs only at specific angles 
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FIGURE 9. Partial local solutions: ,U us. a2. The shaded regions correspond to Im(u) $. 0 and the 
unshaded regions correspond to Im (c) = 0 (for the most dominant mode). The six figures correspond 
to (a) 0 . 4 4 1 ~  < a < 0.813x, (b) 0 . 8 1 3 ~  < a < 0 . 8 8 4 ~ ~  (c) CL = 0 .884~ ,  ( d )  0 . 8 8 4 ~  < a < K, (e) a = n, 
see Proudman & Asadullah (1988), and (f) K < a < 1 . 3 5 ~ .  For values of a < 0.441~1m(g) is always 
non-zero and for a > 1 . 3 5 ~  it is always zero. 

with the dominant mode (i.e. corresponding to the smallest value of Re (a)) having the 
separating streamline along the bisector of the wedge. The problem we pose reduces to 
that of Michael & O'Neill (1977) when the viscosity ratio p = 1.  

For local solutions we must satisfy the normal-stress condition on the free surface, 
6' = 0, (3.lf). This places another restriction on the parameters (T, a$, a, and p, namely 

+ ~ ( a ~ ) { C O S ~ z F ( ~ a , ) - c o s a a 2 F ( a , ) ~  = 0. (3.10) 

The 'relabelling' symmetry is still present. The coefficients for the stream functions are 
still given by (3.6) with parameter values which satisfy (3.3) and (3.10). In the special 
case where a1 = a2 = n: and g = I ,  2,3,4, . . . the additional restriction for the existence 
of local solutions is that 0:) = ,uDy), which leaves 

2Dz' 
cr+ 1 

$l = ,u$2 = ,ur"+l 2Cp) sin ~0 sin I9 +-(sin a0 cos I9 - gcos a6' sin 8) 

Also, when p = 1, additional local solutions can be found for a, = a2 = a, = 0.715~: 
where 201, cos 2a, - sin 2a, = 0 and the stream functions are given by 
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FIGURE 10. Local solutions : a2 us. a for ,u = 1. The vertical lines at a = x ,  2n and the line az = ;a are 
solutions presented by Michael & O”eill(l977). The other curves, not discussed by those authors, 
show that solutions exist for angles other than $a when a =+ n, 2n but that they are not the dominant 
modes. Each branch shown here has a corresponding branch u, which is shown in figure 1 1 .  

= rUfl {A:) cos (a+ 1) e+By  sin (a+ 1) B+ c:) cos (a- 1) o+D:) sin (a- I) 01 
+ By)r2 {( - 2 cos 2a3 8 + sin 281, (3.12~) 

$2 = yo+’ {Ag’cos (a+ 1) 8-t B r )  sin (a+ 1) 8+ Cg)cos (a- 1) 8+DF) sin (a- 1) 8) 

(3.12b) 

where the coefficients for the terms proportional to r“+l are given by (3.6). Note that 
c is determined by (3.3) and (3.10) with the parameter values a1 = a2 = a, = 
+a z 0.715 and p = 1. 

In order to determine the parameter values for which local solutions exist in the 
general case we must solve (3.3) and (3.10) simultaneously. We find that for a given 
value of ,u we can obtain a2 and a as functions of a. Equivalently, for a fixed value of 
a we can obtain a2 and c as functions of p (Anderson 1993). Recall that for single-fluid 
flow the rigid/rigid wedge has local solutions for all wedge angles while the rigid/free 
wedge has local solutions only for the specific wedge angle, x. In the two-fluid problem, 
depending on the value of ,u there may or may not be local solutions for all wedge 
angles. 

We have plotted the solutions a and a2 as functions of 01 for p = 1 (figures 10 and 
l l) ,  p = 0.9 (figures 12-14), and p = 0.02 (figures 15 and 16). Note that each curve 
shown in the a2 us. a plane has a corresponding value of a, shown plotted as Re (a- 1) 

Figures 10 and 11 show the solutions for p = 1 as obtained by Michael & O”eil1 
(1977). The vertical lines 01 = n: and 2x in figure 10 correspond to a = 2, 3, 4, ... at 
a = n: and a = i, 1, C, . . . at a = 2x, respectively, in figure 1 1. The line a2 = t01 in figure 
10 corresponds to the values of a satisfying a sin a -sin aa = 0 in figure 1 1. The dashed 

+ Bf)r2{(  -2 cos 201,) O +sin 28}, 

us. a. 
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FIGURE 11. Local solutions: the values of a which correspond to the solutions az shown in figure 10. 
The curve which is the dominant mode (i.e. smallest value of Re (a)) as well as its extension to larger 
values of Re (a) corresponds to the solution az = ;a in figure 10. The points u- 1 = 1,2,3,4, . . . and 
the points u- 1 = -&O,+, ... correspond to the vertical lines at a = n: and a = 27c, respectively, in 
figure 10 (Michael & O’Neill 1977). Notice that two different curves for a2 correspond to the same 
value of u, consistent with the relabelling symmetry. For a < 0 . 8 8 4 ~  the value of u becomes complex 
along the dominant mode (dashed curve). Two other complex branches corresponding to solutions 
of u sin a - sin ucc = 0 are shown. 

curves represent solutions which have non-zero Im (u). The complex branch emanating 
from the first turning point (point 1)’ at a = 0.8847~’ represents the dominant mode for 
a < 0.8847~. The presence of these complex roots indicates that Moffatt vortices will be 
present in the two-fluid system when ,u = 1. Owing to the requirement of the presence 
of a separating streamline, this dominant mode is a higher-mode solution of the single- 
fluid, rigid/rigid wedge problem (compare figure 1). We identify additional solutions 
not discussed by Michael & O’Neill (1977). These solutions can be seen as the upper 
and lower curves near a = 7t in figure 10 each corresponding to the branch in figure 11 
intertwined with the previously discussed branch. These upper and lower branches in 
figure 10 are actually mirror images reflected about the wedge bisector, a, = :a, and 
hence must necessarily correspond to the same value of CT. Note that there are also 
roots leaving the turning points of the higher-mode branch that is intertwined with the 
branch corresponding to the solutions of (T sin a - sin gcx = 0; however, these branches 
correspond to values of a2 which are complex and hence are not physically allowable. 
The two branches in figure 10 extending into the domain for values of a near 27c 
correspond to the higher-mode solution near a = 27t in figure 11, and also have the 
same mirror symmetry. The existence of these higher-mode solutions indicates that 
angles other than a2 = :a are allowed when a + 7t, 27t but do not correspond to the 
dominant mode. 

In order to describe the behaviour of these roots as p is perturbed from unity, it is 
necessary to identify the singular points at p = 1, in particular the turning points and 
the double/multiple roots. There are several such points in parameter space; we shall 
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FIGURE 12. Local solutions: a2 us. a for ,u = 0.9. Near tc = x the solution branches have bifurcated 
into separate branches. The branch for a < 0 . 8 8 4 ~  has disappeared since the corresponding value of 
a2 has become complex. The insets show the corresponding flow field for the points along the solution 
branches indicated by arrows. The lower inset shows a ‘typical’ first-mode flow while the upper inset 
shows a higher-mode flow in which there is a separating streamline present in fluid 2. Point A 
indicates the position along the upper branch in which the flow in fluid 2 develops a separating 
streamline; beginning to the right of this point and ending at a = a2 = x the flow is separated and 
beginning to the left and ending at a = a2 = R the flow is not separated. Point A corresponds to the 
local maximum in the value of (r as shown in figure 13. 

focus on just three. These are points 1, 2 and 3 as shown in figures 10 and 11. Point 
1 is a turning point; to the right corresponding to real-valued u and to the left complex- 
valued u. Point 2 corresponds to a double root (a = R, a2 = iz, u = 2). It is important 
to note that the point marked by 2 in figure 10 can be identified with any of the points 
g = 2,3,4, , . . at a = n in figure 11. We shall only consider the point corresponding to 
the smallest value of r. Point 3 is also a double root (a = 2n, a2 = n, c = i). We find 
that solutions to the system of nonlinear equations undergo several interesting 
bifurcations at these points when p is perturbed from unity. 

Figures 12-14 show the solutions for ,u = 0.9. We shall consider first the bifurcation 
from point 1 (see figures 10 and 11). The branch corresponding to complex values of u, 
when ,u = 1 and a < 0.884n, is never a solution for p =l= 1 because a, becomes complex 
along this branch and is therefore not physically allowable (compare figures 10 and 11 
with figures 12 and 13). The complex ‘root’ is actually a pair of roots that leaves the 
physical plane when perturbed. This result was obtained numerically and confirmed by 
asymptotic analysis (Anderson 1993). 

The second region of interest is near point 2 in figures 10 and 11 where the two 
branches (a) a = x, g = 2, and (b) a2 = +, ~7 sin a- sin ua = 0 intersect. Notice that 
branch (a) is a solution for all values of a2 < n but for a single value of cr and a, while 
branch (b) is a solution for spec@ values of a2 and v at each value of a. When ,u is 
perturbed from unity, these two branches split at the intersection and form two non- 
intersecting branches. If we look at this bifurcation in the a, us. a plane (figure 12), we 



Two-fluid viscous flow in a corner 23 

2.0 7 I 

1.5 - 

1.0 - 
n 

I 
b 
3 - 0.5 - 

2 
0 -  

-1.0 
0 0.5 1 .o 1.5 2.0 

ah 

FIGURE 13. Local solutions: the values of u which correspond to the solutions ccz shown in figure 12. 
The branches which corresponded to a double root with complementary values of ct2 for y = 1 have 
now separated. There is also a small-scale pattern near cc = 7c and CT = 2 which is enlarged in figure 
14. All of the roots shown are real valued. Note that to the right of point A along this branch the 
flow is separated in fluid 2 while to the left it is not separated. 

see that the lower portion of branch (a) has merged with the right portion (i.e. a > 71:) 
of branch (b). The upper portion of branch (a) has merged with the left portion of 
branch (b). 

Figure 13 shows this bifurcation in the Re (a- 1) vs. a plane. The solution has not 
changed significantly from the ,u = 1 case for values of a significantly larger than 71: but 
near a = x the changes are quite dramatic. From this figure we see that the locally 
monotone curve with ,u = 1 near a = n; and u = 2 (see figure 11) has become multi- 
valued. Figure 14 shows the region near this point enlarged so that even more structure 
is revealed. Here we see that the solutions which corresponded to the ‘single point’ 
cr = 2, a = x and the curve passing through this point have bifurcated into a partial 
spiral pattern. This occurs on a very small scale that is present but only partially visible 
in figure 13. Note that for values of a just smaller than R there are now five values of 
cr near u = 2 rather than the previous single value for ,u = 1. 

The insets in figure 12 show sketches of the flow for points along the upper and lower 
bifurcated branches at a = x. These points are also marked in figure 13. The lower inset 
corresponds to the lower branch and shows a ‘typical’ first-order corner flow. Point A 
shown in these figures indicates the position along the upper branch at which the flow 
in fluid 2 develops a separating streamline. For values along this curve beginning to the 
right of this point and ending at a = a2 = 71: and u = 2 the flow in fluid 2 is separated. 
For values along this curve beginning to the left of this point and ending at 
a = a2 = x and u = 2 neither of the flows in fluid 1 or fluid 2 is separated. The upper 
inset corresponds to a point along this higher mode in which there is a separating 
streamline in fluid 2. 

We have captured the bifurcation near point 2 numerically as well as asymptotically. 
The uniformly valid solutions for a2 and CT as functions of a for ,u - 1 which describes 
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ah 

FIGURE 14. Local solutions : the blown up region near a = x and u = 2 in figure 13 which shows how 
the two solution branches at ,u = 1 have bifurcated into a partial-spiral pattern. Similar patterns are 
present in other locations in parameter space. 

the partial spiral pattern in figure 14 and the corresponding values of a2 in figure 12 
are given by 

az - (!p+a,(Q-$r)+ ..., (3.13a) 

(3.13 b) 

where [ = (a-n)/@- I), is determined by 

[ = -4 tana,(O(sin2a,(O-(~-&'2))(sin2 ao(o-(G+i2/2)), (3.14) 

and @,(a) is determined by (r, sin a - sin go a = 0. This perturbation expansion is valid 
for the portion of the branch including the partial-spiral pattern seen in figure 14 and 
is matched to the outer solution in both directions but does not include the turning 
point region. 

Next, we consider the region near point 3. The sections of the vertical line a = 27c 
with t7c < 0 1 ~  < n and :7c < a2 < 27c in figure 10 begin to bow into the domain (see figure 
12) for ,u = 0.9, while the other sections bow out of the physical domain as ,u is 
perturbed from unity. The 'single point' CT = t in figure 11 grows into curves which 
extend as far into the domain as the curves for a2. These curves are barely visible here 
but become more apparent for values of ,u farther from unity. These branches are very 
important since they correspond to the dominant mode for values of a near 27c. 

Other solutions for ,u = 0.9 can be seen in figures 12 and 13. In particular we can 
observe the splitting of the two higher-mode solutions, (r, (compare figures 11 and 13) 
and the presence of a small lobe just underneath these modes in figure 13 near 01 = 27c. 
Figure 12 shows the corresponding value of 0 1 ~ .  

In figures 15 and 16 some of these roots are shown for p = 0.02. The two roots on 
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FIGURE 15. Local solutions: the first few roots for p = 0.02. The isolated points, marked by asterisks, 
correspond to solutions that have complex values of u while still having real-valued solutions for a2. 
Such complex solutions can be represented as a family of solutions with the free parameter a but, 
because ,u is fixed, they appear on these plots as isolated points. 

0 0.5 1 .o 1.5 2.0 

a h  

FIGURE 16. Local solutions: the values of Re((+- 1) which correspond to the solutions a2 shown in 
figure 15. The presence of the complex-valued solutions is indicated by the asterisks (only the real part 
is shown). All other values of u on this plot are real valued. These isolated point solutions fall along 
complex branches connecting the real branches shown in this figure. However, along such branches 
the value of a2 is complex except at the points shown, where its imaginary parts crosses zero. 
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FIGURE 17. Local solutions: the value of u, corresponding to two roots which have complex values 
of (T. They correspond to very small values of a* and very small values of p ;  however, by symmetry 
there are also solutions with ug very near u for large values of p. 
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FIGURE 19. Local solutions: the values of p corresponding to two roots that have complex values of 
CT. Notice that they correspond to very small values of ,LL, indicating very disparate fluid viscosities. 

the right in figure 15 originate from the vertical line a = 2x for p = 1 in figure 10 and 
are now bowed-in significantly (the higher-mode solutions for p = 1 appearing near 
a = 2x in figures 10 and 11 are not shown here). We can see that this lower root is 
the dominant mode for large values of a. Therefore, there is a discontinuity in 
the dominant mode as a varies. The ‘main’ branch, with a2 ranging from x down to 
zero and u increasing from i, in figures 15 and 16 has evolved from the branches, 
a2 = &, a = x, as well as the higher-mode solution shown near a = x and the 
corresponding values of cr for ,u = 1 in figures 10 and 11. These branches just discussed 
all have real values of cr. 

The isolated points marked by asterisks in figures 15 and 16 correspond to solutions 
with complex values of cr (just the real parts are plotted). These points fall along 
branches which have, in general, complex values of u and a2. These isolated solutions 
correspond to points along these complex branches where Im(u) + 0 while 
Im(a,) = 0 (i.e. where Im(a,) crosses zero). There is a one-parameter family of 
solutions with Im (a) 9 0 and Im (a,) = 0. The solutions with complex values of u have 
one fewer degree of freedom than the solutions for real values of u. To see this we note 
that regardless of whether is real or complex, we need to solve the two equations (3.3) 
and (3.10). When u is real, there are four independent variables, u, a2, a, and p, and 
therefore we expect to find a two-parameter family of solutions, namely a2 = a2(a,p) 
and u = cr(a,p) as seen in figures 10-16. When cr is complex, say u = p+iq, both (3.3) 
and (3.10) will have real and imaginary parts. This gives us four real equations to solve. 
However, since cr is the only complex parameter, there are only the five independent 
variables p ,  q, a2, a, and p. This leads to a one-parameter family of solutions, viz. 
a2 = a2(a), CT = .-(a), and ,u = ,u(a). Figures 17-19 show two such complex roots. Note 
that they correspond to very small values of az and ,u (by symmetry there are also 
solutions with a2 near a and ,u very large). These solutions appear as single points in 
figures 15 and 16 since the value of p is fixed. 

2-2 
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To the right of the 'main' branch there appear to be a sequence of complex roots 
as shown by the isolated points in figures 15 and 16. These points, however, appear for 
only a small window of parameter values. We find that when ,u increases, the main 
branch of a moves to the right (i.e. towards larger values of a). At the same time, the 
isolated complex solutions also move towards larger values of a as ,u is increased (see 
figure 19). However, the main branch catches up to the complex points near ,u = 0.06 
and incorporates them into the main branch as real solutions. 

There do not appear to be solutions for values of a to the left of the main branch 
(i.e. smaller values of a) for p =l 1. Recall that we found asymptotically that, when ,u 
was perturbed from unity, the value of a, became complex along the dominant branch. 
We have tracked the complex roots which bifurcate to the left for the first few limit 
points of the main branch for values of ,u ranging from near zero to near unity but find 
the value of a2 along these branches is complex; no points where Im(a2) crosses zero 
similar to those found to the right of the main branch were found. 

These results have revealed several quite different types of behaviour of the solution 
when ,u is perturbed from unity. Firstly, near a = 2n: we observe that 'new' branches 
can form and become the dominant mode (this feature is more apparent for smaller 
values of p). Secondly, near the intersection at a = a, a, = :a, and g = 2 the nature of 
the solution changes dramatically. We observe a splitting of the roots at this point. 
Finally, the most dramatic change occurs for a < 0.884n where the perturbed solution 
loses existence. 

We note that for given values of a and ,u there are many possible values of az and 
cr for local solutions. These modes are relatively ordered in terms of the value of 
Re (cr) since the higher modes correspond to larger values of Re (g). The domain for g 
is unbounded and hence the roots can 'spread out'. However, all of these modes must 
correspond to values of a2 between zero and a and hence as more and more modes are 
shown these plots become cluttered. It is therefore conceivable that for some values of 
,u and a almost any value of az between zero and a, hence any geometry, is allowed. 
However, since the solutions come in pairs, (a2, cr), we can identify those geometries 
that correspond to the most dominant mode. 

4. Summary 
We have presented a local picture of two-fluid flow in a wedge. The governing 

equations simplify to the biharmonic equation for the stream function, $ - r"+lf,(O). 
We give the geometries for which solutions exist, identify the types of singularities that 
are present at the corner, and determine how these singularities vary with the wedge 
angle. We have also identified cases where Moffatt vortices may be present. 

The class of solutions sought are those with bounded velocities at the wedge vertex. 
We distinguish between local solutions, satisfying all local boundary conditions, and 
partial local solutions. Partial local solutions are studied when a free surface is present 
and satisfy all of the local boundary conditions except the normal-stress boundary 
condition. They represent the leading-order perturbation approximation for @ for an 
asymptotic expansion for small capillary number, C. Section 2.1 contains a discussion 
of the perturbation theory taking into account the higher-order terms. We find that the 
limit C+O with r+O is non-uniform and that, in support of the results by Schultz & 
Gervasio (1990), the free surface has an infinite curvature at the corner that is balanced 
by the normal force exerted on it. 

For single-fluid flow in a wedge defined by two rigid planes, local solutions exist for 
all wedge angles (Dean & Montagnon 1949). Local solutions can be obtained only for 
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the wedge angle x for both rigid/free (Michael 1958) and free/free wedges. For the 
rigid/free case the stress has a square-root singularity at the corner while in the 
free/free case the stress is regular. Partial local solutions (Moffatt 1964 a) for rigid/free 
and free/free wedges can be found for all wedge angles. In general, as the wedge angle 
increases, Re (a) decreases giving more singular stresses (see figure 1). When either one 
or both boundaries are rigid, Moffatt vortices are possible (Moffatt 1964a). In the 
rigid/free case, however, this is the case only for partial local solutions; local solutions 
with complex values of a in such cases do not exist. 

For two-fluid systems we have extended the analyses of Proudman & Asadullah 
(1988) and Michael & O’Neill (1977) to include all wedge angles and viscosity ratios 
for both local and partial local solutions. Here, the physical parameters are the two 
wedge angles, a, and a2 (where a, + az = a), and the viscosity ratio, ,a. In an analogous 
fashion to the single-fluid results with the rigid/free wedge, local solutions could be 
found only for specific wedge geometries; however, there now exists a class of 
geometries for which this is true. Given values of ,u and a, the values of a and a2 (or 
a,) can be determined. For partial local solutions there is an additional degree of 
freedom and therefore we obtain g = a@, a,, a2). As in the single-fluid cases, Re (g) 
tends to increase as the total wedge angle decreases, however g remains finite as either 
a1 or a2+0. For a < 0.715~ the stress is never singular and for a > 1.71511 the stress 
is always so. Between these values the viscosity ratio and the individual wedge angles 
play a role in determining whether or not singularities are present. Further, when the 
smaller wedge of fluid corresponds to the lower viscosity, the singularity is stronger 
than otherwise. Also, for a < 0 . 4 4 ~  the dominant root is always complex while for 
a > 1 . 3 5 ~  it was always real. 

An interesting feature of this analysis is the nonlinear behaviour of the roots, a, for 
small but non-zero ,u (or similarly large but finite p) and also for ,u near unity found 
for partial local solutions and local solutions. 

For partial local solutions when ,u = 0 there are distinct roots, v, which have 
intersecting real parts. If these roots also intersect in the complex plane, then as p 
increases from zero, these intersecting roots split and become distinct, non-intersecting 
roots (see figure 3). If these roots do not intersect in the complex plane, they remain 
as distinct, non-interacting roots when ,u is perturbed from zero. These two roots 
correspond to the two modes of flow - velocity and stress - identified by Proudman & 
Asadullah (1988). We find that these modes are present for all total wedge angles, 
including those where Moffatt vortices are present, (e.g. when a = in). 

For local solutions there is a similar nonlinear splitting of roots. Entire solution 
branches can be lost as the parameter are perturbed. Therefore, although solutions 
exist for all total wedge angles when p = 1, not all total wedge angles admit solutions 
when p + 1. 

In the analysis for local solutions we also find that higher-mode solutions (i.e. those 
with values of a which were not the smallest) can become the dominant mode as 
parameter values changed (e.g. see figures 13 and 16). 

We find that for both partial local solutions and local solutions a can be complex, 
indicating that, as in the single-fluid cases, Moffatt vortices may be present. Local 
solutions with real values of CT are found as functions of a and ,u, while those with 
complex values of a comprise only a one-parameter family. Furthermore, local 
solutions with complex values of a do not appear to correspond to the dominant mode 
except for the case where p = 1. 

The authors appreciate the suggestions on the numerical analysis by P. Gavin 
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Appendix. Roo t-spli tting asymp to tics 
We have performed a perturbation analysis which captures the root splitting 

bifurcation observed in the solutions of (3.3) required for the existence of partial local 
solutions for ,u @ 1. The uniformly valid solution for y < 1 for the lower root is given 
by 

a (a ,+z , ( ' I ) -ao )+y~ ja (a+~g)+ . . .  P1 for a2 < a;, (A l a )  

g - (a,+z,(n)-a~)+l."(a(F)+*P"5)+... P2 for a2 > a:, (A 1b) 

where 

give the leading-order solution to the left and right of the intersection, 

aB sin 2a, - sin 2a, a1 = 0, a: sin2 a2 - sin2 crA a2 = 0 (A 2a, b) 

4 sin2 Z ,  a - sin2 a a, sin 2 a  - sin 2a0 a = 0 (A 2 c-e) Y E - ,  "2 'I' 
P Z,(Z, sin 201 - sin 22, a)' 

correspond to the inner boundary layer correction near a2 = 0, and 

correspond to the inner solution near the intersection, a*, a:, and a: given by 

F * ~  sin2 a: - sin2 cr*a,* = 0, a* sin 2 4  -sin 2 a * 4  = 0 (A 2 h, i) 

(A 2n, 0) 
p3  = g* sin 2 4  -sin 2r*a:, p 4  = cos 2a*a: -cos 2a:, p 5  = a*2 sin2 a: - sin2 o*a:. 

(A 2 w )  
We note that (A 2 f )  gives the correct inner expansion near a general intersection 
represented by cr*, a;, and at for both the upper and lower roots. The matching 
conditions determine which sign in ( A 2 n  is used. For the dominant branch 
(i.e. corresponding to the smallest value of cr) the minus sign in (A2f) is always 
used. The range of a for which the lowest roots intersect is given approximately by 
1.351 < a < 27c. We find good agreement between these asymptotic results and the 
numerical results for small values of ,u. 

fl = p1p2, f 2  = ~ * ( P ~ P ~ + ~ P ~ P ~ ) ,  f 3  = p3p5 ,  f ,  = ~ v * ~ P , P , ,  (A 2 j - 4  
p1 = sin 2a: - 2 4  cos 2a*a:, p 2  = 2a* sin2 a,* -at sin 2a*a,*, 
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